「超ひも理論を疑う」を読む

本日は、久々に物理学の話題に戻りまして、ローレンス・M・クラウス著「超ひも理論を疑う―「見えない次元」はどこまで物理学か?」を読むことといたしましょう。

1. 同書の性格

同書の原題は"HIDING IN THE MIRROR/The Quest for Alternate Realities, from Plato to String Theory by way of Alice in Wonderland, Einstein, and The Twilight Zone"という恐ろしく長いもので、これを日本語に直訳いたしますと「鏡の中に隠れて―プラトンからアリスの不思議な国、アインシュタインそしてトワイライトゾーンを経てひも理論に至るもう一つの真実の探求」というわけです。

同書の性格は、この原題に明確に現れておりまして、アリスやサイエンスフィクションを引きながら、現代物理学の最前線をわかりやすく解説しようと試みた書物です。

まあ、読んでみますと、なんとなくわかった気になるのですが、実のところは何もわかっていないというもどかしさがあるのですが、それも訳者あとがきの次の部分を読めば無理もない話です。

とくにひも/M理論になると、訳者の友人である物理学者によれば、日本を代表する某国立大学の理学部物理学課でもひとにぎりの者にしかわからないそうなので――かつて相対性理論を理解しているのはアインシュタインのほかに世界で数人だけと言われていたという説を思い出すが――、すべてを理解しようとして読むのは無茶なのかもしれない。

と、いうわけですから、わからなくてもあたりまえ、それが普通、ということでしょう。

2. 同書の内容

同書の内容を、章を追って簡単にご紹介いたしますと、次のようになります。(青字は引用です)

第1章 空間に住む特権?:この章は、簡単に読み飛ばしてしまいそうな章なのですが、非常に重要な内容を含みます。

プラトンは、われわれの生を、洞窟の中で拘束され、外の光の世界を直接には見られない人の生に似たものと見なした。この囚われ人は、洞窟の外に置かれたどんな対象も、洞窟の奥の壁に投げかけられる影として見ている。……

プラトンは、……拘束を解かれて外の光の元へ引きずり出されたらどうなるかを考えてみよ、と語る。もちろん最初は、まぶしさが苦痛で、居慣れた洞窟の暗がりへ戻りたがるだろう。だがやがては、世界の真の驚異に打たれて陶然となる――そのあまり、もとの無知な囚われの状態に戻ることなど考えられなくなるのだ。それにたとえ戻ったとしても、どうしたら、自分が狂っているとは思われずに、無知な仲間に真実を伝えられるだろうか?

しかしプラトンは、これこそ真の哲学者の果たすべき役割だと主張した。哲学者は、現実に対する無難な見方を潔く捨て、知の恐るべき新領域を抜ける旅に乗り出さなければならない。

ここでプラトンが述べているのは「哲学」ですが、事情は物理学でも同様です。で、このために力になるのは数学である、というのですね。

一方、後世の化学者、ラヴォアジェは「見えも触れもしないものでは、想像の飛躍に注意しなければならない」と警告しておりまして、それが単なる「想像の飛躍」であるのか、「知の恐るべき新領域」であるのかが問われることになる、というわけです。

第2章 カエルの脚から「場」に至る:この章では、電気の発見から、マクスウエルの電磁気学、そして、光は電磁波であるとの発見が紹介されます。

第3章 相対論への道:この章では、エーテル仮説から特殊相対性理論に至る道筋が語られます。

第4章 第四の次元:この章では、特殊相対性理論の結果として生じる、さまざまな不思議な現象を論じます。

第5章 宇宙をかき乱す:この章では、一般相対性理論、すなわちアインシュタインの重力理論が紹介されます。空間は曲がっている、というわけです。

第6章 宇宙を測る:この章では、ビッグバンの名残である背景輻射が紹介され、このパターンを解析することで宇宙の曲率が測定できることを紹介します。で、その結論は、宇宙は平らである、というのですね。

昔の常識では、宇宙空間にはエネルギーが分布しており、宇宙は正の曲率を持つ、とされておりました。しかし、重力によるポテンシャルエネルギーは負であるという効果を加えると、エネルギーはゼロになる、というわけです。これはインフレーションという理論ですね。

で、宇宙空間に存在する既知の物質だけでは不足しており、「真空のエネルギー」が必要である、というわけです。これが何物であるのか、同書はヒントだけ与えているのですが、エネルギーと時間の不確定性により、きわめて短時間であれば無から有が生じることが許され、生じたものはすべて正のエネルギーを持ちますので、真空が有限の正の密度を持っていても不思議はありません。

第7章 「平面国」からピカソまで:この章は、雰囲気を変えて、文芸作品などに現れた四次元の概念を紹介いたします。

第8章 最初の隠れた世界――余剰次元の物理学:この章では、重力理論と電磁気の理論を統合するための一つの試みとして5次元空間というアイデアが生まれたことを紹介いたします。しかしこのアイデアは、その理論の不完全性と、一般相対性理論の成功や、量子力学の進展のため、忘れられてしまいました。

第9章 回り道:この章では、1920年代末以降の、量子力学の発展について解説がなされます。量子力学は、その初期において、原子の構造を明らかにし、陽電子や中性子やニュートリノの発見といった大きな成功を収めました。

第10章 どんどん変に……:この章も、前章に続き、量子力学の発展が語られます。1950年代になりますと、次々と新しい素粒子が発見され、量子力学が混沌とした状況を呈してまいります。

第11章 混沌のなかから……:この章は1960年代の量子力学の進展を扱うもので、26次元空間の「双対ひも理論」が発表される一方で、クオーク説の登場、場の量子論(ゲージ理論)、量子色力学が徐々に完成された姿となります。

第12章 異次元からのエイリアン:この章は、再びサイエンスフィクションのお話に戻ります。

第13章 もつれた結び目:この章は、1970年代の、希望に満ちながらも混乱した状況が解説されます。場の量子論と量子色力学が成功を収める一方、大統一理論への期待が高まり、自然界にみられるスケール間の大きく離れた階層や対称性が注目されます。また、11次元のひも理論が究極の理論ではないか、と考えられるようになります。

第14章 超世界の超時間:1980年代になると、超ひも理論が注目を集め、究極理論として多くの研究者に扱われるようになります。多次元のひも理論は、余剰次元は「巻き上げられている」つまり、宇宙は余剰次元の方向には極めて小さな曲率半径になっている、とされています。二次元平面を、くるくると巻いて、直径が極めて小さなストローのような形にすれば、一次元の直線に見えるのですが、同じことが余剰次元でも起こっている、と考えられます。

第15章 Mはマザー(母)のM:この章では、1980年代から90年代にかけての超ひも理論の展開が語られます。DブレーンやM理論など、さまざまな理論が注目されるようになります。

第16章 DはブレーンワールドのD:この章で扱う話題は、1990年代の後半から21世紀にかけての進展でして、おなじみの美人物理学者、リサ・ランドールが登場いたします。見えない次元の方向に接近して別の宇宙があるという考えで、さまざまな力の起源を説明いたします。

ちなみに、この章と前の章の題名は、ブラッドベリのSF集、“S is for Space”や“R is for Rocket”にちなむものと思われますが、ブレーンワールドのどこにDが出てくるのか、ちょっと考えますね。まあ、最後はdなのですが、、、

第17章 空虚な理論?:というわけで、余剰次元に基づく大統一理論の試みが多々なされてきたのですが、これらが単なる机上の空論であり、エーテル仮説と同様、いつの日にかもろくも崩れ去る、という可能性は否定できるものではありません。とはいえ、それは自然界の探求という意味で、無駄なものではない、として同書を締めくくります。

以上が、少々長くなってしまいましたが、内容のご紹介です。

3. 違和感

さて、同書を読んでの感想ですが、この物理学のいき方には、少々違和感を覚えます。

物理法則というのは、複雑な現象を単純な理論で説明するから価値があるのであって、大統一理論というものがもしあるとすれば、それは共通の原因から物質のさまざまな振る舞いを説明できなければいけません。

で、次元を増やして原因を一つにまとめることは、確かに単一の原因からさまざまな現象を説明してはいるのですが、次元を増やしてしまっていては、単純な理論であるとはいえません。世界は11次元であるということが、素粒子間に働く力は4種類であるということに比べて、より単純に世界を記述しているのかは、はなはだ疑問であるわけです。

同様の疑問は、量子力学にもあるわけで、波動方程式をどんどん複雑にしていって、さまざまな現象を矛盾なく説明する、というアプローチが、現在にいたる量子力学の王道であるように思われるのですね。

このアプローチ、確かに、既存の現象を矛盾なく説明できる式が結果的に得られますから、さまざまな条件下での粒子の振る舞いを予想することはできますし、これまで見出されていなかった現象なり粒子なりが見出されることもある、という意味でそれ相応の価値はあります。

しかし、自然をより単純な法則で理解する、という意味からは大きく外れており、実際問題として、今日の物理学は普通の人にとって理解しがたいものとなっております。自然がそれほど複雑である、といわれてしまえば言い返す言葉もないのですが、もう少し単純に記述できないものか、と思うのは私だけではありますまい。

まあ、相対性理論(アインシュタインの重力理論)も、そうそう簡単ではない、ということは確かなのですが、こちらは、曲がった空間の記述方法という、この理論を語る上で不可欠の数学的手法がわかりにくいのであって、重力理論そのものはさほど複雑なものではないのですね。

その他、クオークも、いわれてみればなるほどと思うわけで、このあたりまでは、物理学の成功であることは間違いがないでしょう。しかし、その先の、ひもの話となりますと、その価値がいったいどのあたりにあるのかは、きわめて疑問であるように、私は思います。

同書の著者のスタンスも、こういったところにあるように読み取れまして、そういう意味では、大統一理論のロマンを求める人には少々面白くないかもしれませんが、私には好感の持てる書物ではありました。

4. このブログの立場

さて、このブログでは、物理に対して次の3つを基本原理として提案しております。

第一原理:知りえないことを科学は語りえない
第二原理:主体に関する概念を科学は扱えない
第三原理:時間は虚数的に振舞う

この第三原理は、科学の限界を定める第一、第二原理とは少々趣をことにしているのですが、物理法則の単純化という意味で、ミンコフスキーが提案し、なぜか忘れ去られているこの原理を追加しているのですね。

で、空間が3つの実数次元を持つのに対し、実数と直交する虚数次元が一つだけ、というのは少々解せず、虚数次元も3つあるのが自然なように思われます。となれば、世界は6次元で、そのうち二つが巻き上げられている、という可能性もあるのですが、、、

ありゃりゃ。楽天ブログの文字数の制限に近づいてしまいました。この話題は、またの機会に扱うことといたしましょう。


虚数時間の物理学、まとめはこちらです。

このエントリーをはてなブックマークに追加
Pocket

コメントを残す

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です